EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2.
نویسندگان
چکیده
Differentiation of erythroid cells requires precise control over the cell cycle to regulate the balance between cell proliferation and differentiation. The zinc finger transcription factor, erythroid Krüppel-like factor (EKLF/KLF1), is essential for proper erythroid cell differentiation and regulates many erythroid genes. Here we show that loss of EKLF leads to aberrant entry into S-phase of the cell cycle during both primitive and definitive erythropoiesis. This cell cycle defect was associated with a significant reduction in the expression levels of E2f2 and E2f4, key factors necessary for the induction of S-phase gene expression and erythropoiesis. We found and validated novel intronic enhancers in both the E2f2 and E2f4 genes, which contain conserved CACC, GATA, and E-BOX elements. The E2f2 enhancer was occupied by EKLF in vivo. Furthermore, we were able to partially restore cell cycle dynamics in EKLF(-/-) fetal liver upon additional genetic depletion of Rb, establishing a genetic causal link between reduced E2f2 and the EKLF cell cycle defect. Finally, we propose direct regulation of the E2f2 enhancer is a generic mechanism by which many KLFs regulate proliferation and differentiation.
منابع مشابه
The multifunctional role of EKLF/KLF1 during erythropoiesis.
The cellular events that lead to terminal erythroid differentiation rely on the controlled interplay of extra- and intracellular regulatory factors. Their downstream effects are highly coordinated and result in the structural/morphologic and metabolic changes that uniquely characterize a maturing red blood cell. Erythroid Krüppel-like factor (EKLF/KLF1) is one of a very small number of intrinsi...
متن کاملThe DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells.
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulatio...
متن کاملE2F2 represses cell cycle regulators to maintain quiescence.
E2F transcription factors control diverse biological processes through regulation of target gene expression. However, the mechanism by which this regulation is established, and the relative contribution of each E2F member are still poorly defined. We have investigated the role of E2F2 in regulating cellular proliferation. We show that E2F2 is required for the normal G(0)/G(1) phase because targ...
متن کاملMicroRNA-218 and microRNA-520a inhibit cell proliferation by downregulating E2F2 in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the fifth most common cancer type worldwide and the third leading cause of cancer-associated mortality. To date, its pathogenesis has remained poorly understood. Previous studies have demonstrated that deregulated microRNA (miR) participates in hepatocarcinogenesis. In the present study, miR-218 and miR-520a were observed to be downregulated in human HCC cells ...
متن کاملThe erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability.
Development of red blood cells requires the correct regulation of cellular processes including changes in cell morphology, globin expression and heme synthesis. Transcription factors such as erythroid Kruppel-like factor EKLF (Klf1) play a critical role in erythropoiesis. Mice lacking EKLF die around embryonic day 14 because of defective definitive erythropoiesis, partly caused by a deficit in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 284 31 شماره
صفحات -
تاریخ انتشار 2009